FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 1: Fractions and Exponents
1-1 The product of two-sevenths and eleven-thirtieths, subtracted from the sum of one-third and three-fifths, is $\frac{a}{b}$, where a and b are positive integers with no common factors greater than 1. Find $a+b$.

1-2 If n is a real number such $\left(\frac{3^{n}}{9}\right)^{n-3}=9$, find the sum of all possible values of 3^{n}.

1-3 If x and n are positive numbers such that $x^{n}+x^{-n}=5$, find the value of $x^{3 n}+x^{-3 n}$.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 2: Rational Expressions and Equations
2-1 If $y=\frac{3 x-7}{2 x+5}$ and $z=\frac{y+10}{4 y-1}$, then there exist integers a, b, c, and d that share no common factors greater than 1 such that $z=\frac{a x+b}{c x+d}$. Find the value of $a+b+c+d$.

2-2 For how many positive integer values of $n, 4 \leq n \leq 60$, is the fraction $\frac{n-3}{n+3}$ in simplest form?

2-3 Artist Lotso Monet asks his friend to watch his gallery for 8 weeks. In return, Lotso will give his friend $\$ 1200$ plus one of his paintings, which is valued at d dollars. Unfortunately, the friend has an emergency and has to leave after watching the gallery for only n weeks. Lotso compensates his friend proportionally with $\$ 200$ and the painting. If n and d are both positive integers, find the sum of the highest and lowest possible values of d.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 3: Circles

3-1 Points F, C, M, and L lie on the circumference of a circle, and chords $\overline{F M}$ and $\overline{C L}$ intersect at point P. If $m \overparen{F C}=60^{\circ}, m \angle M P L=40^{\circ}$, and $\overparen{C M} \cong \overparen{M L}$, find the measure of $\overparen{F L}$ in degrees.

3-2 On a large clock on a tower, the minute hand is 12 inches long and the hour hand is 10 inches long. In a fixed interval of time (less than one hour), the tip of the minute hand traces out $\overparen{A B}$ and the tip of the hour hand traces out $\overparen{C D}$. If, at the end of this interval, $\overparen{C D}$ has a length of 5 inches, what is the length in inches of $\overparen{A B}$?

3-3 Refer to the diagram. Line segment $\overline{P F}$ intersects the circle at points F and C, and line segment $\overline{P M}$ intersects the circle at points M and $L . M L=2 F C, P L=8$, and $P C$ and $F C$ are integers. If n is the number of possible values of $F C$ and x is the largest possible value of $F C$, find $n+x$.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 4: Quadratic Equations \& Complex Numbers

4-1 The quadratic equation $(1+2 i) z^{2}+7 z+2-4 i=0$ has two solutions z_{1} and z_{2}, where $\left|z_{1}\right|<\left|z_{2}\right|$. For $z_{1},\left|z_{1}\right|=\frac{a \sqrt{b}}{c}$ where a, b, and c are positive integers where a and c have no common factors greater than 1 and b has no perfect square factors greater than 1. Find $a+b+c$.

4-2 A quadratic function $f(z)=z^{2}-5 z+a+b i$, where a and b are real numbers, has zeros of $2+p i$ and $q-6 i$ for some real numbers p and q. Find $a+b$.

4-3 Consider the quadratic function $g(z)=a z^{2}+2 i z-5$, where a is a nonzero integer and $|a| \leq 10$. It is known that $g(z)$ has complex zeros with rational coefficients. Find the sum of all possible values of a.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 5: Trigonometric Equations
5-1 If x is an angle in Quadrant I and $\sin ^{2}(x)+\cos ^{2}(x)+\tan ^{2}(x)=10000$, find $\sec (x)$.

5-2 If $0 \leq x \leq \frac{\pi}{4}$ and $\cos (x)+\sin (x)=1.2$, then $\cos (x)-\sin (x)=\frac{\sqrt{a}}{b}$, where a and b are positive integers and a has no perfect square factors greater than 1 . Find $a+b$.

5-3 For $0 \leq x \leq 2 \pi$, the sum of all possible values of x that solve the equation $2 \sin (2 x)=\tan (x)$ is $k \pi$ for some integer k. Find the value of k.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 6: Sequences \& Series
6-1 A sequence is defined recursively: $a_{1}=2, a_{2}=3$, and for all $n>2, a_{n}=2 a_{n-2}-a_{n-1}$. How many of the first 50 terms are positive?

6-2 The third term of an arithmetic series is 9 , which is three times the sum of the first three terms. What is the $30^{\text {th }}$ term of the series?

6-3 An infinite geometric series has a common ratio r and infinite sum $S>0$. The sum of the second term and $r^{2} S$ exceeds the value of the first term by 40%. If S is an integer and only the first two terms of the series are integers, find the least possible value of S.

FAIRFIELD COUNTY MATH LEAGUE 2023-2024

Match 5

Team Round

Please write your answers on the answer sheet provided.

1. A proper fraction $\frac{a}{b}$ where a and b have no common factors greater than 1 has the property that multiplying the numerator by 7 and increasing the denominator by 40 will increase the value of the fraction by 40%. Find the sum of all possible values of a.
2. Given the equation $\frac{x+k}{x-4}-\frac{3 x-5}{2 x-1}=\frac{10 x+30}{2 x^{2}-9 x+4}$, the value of k is such that $x=4$ is an extraneous solution. Given this value of k, what is the non-extraneous solution of the equation for x ?
3. A dog is on a leash tied to the corner of a shed shaped like a rectangular prism that is 20 feet long and w feet wide. The leash is 16 feet long. If the dog has as much area to roam as it would if it could roam freely in a circle at the end of a 14 -foot-long leash, what is the value of w ?
4. A local math league is selling protractors to raise funds for busing. Students on the team produce a model that says that when protractors are priced at $\$ 2.50$ each, they expect to sell 140 of them. Additional research indicates that every price increase of $\$.50$ will result in selling 10 fewer protractors. Based on this model, find the maximum number of cents in revenue that students will be able to earn from this fundraiser.
5. Consider right triangle $F C L$ with right angle C. Point M lies on $\overline{C L}$ such that $\overline{F M}$ is an angle bisector. If $F L=k(F C)$ for some integer $k, C M=5$, and $F C<6$, find the least possible value of k.
6. An infinite geometric series with the first two terms $90+78+\cdots$ has an infinite sum S. The sum of the first n terms of an arithmetic series with the first two terms $90+78+\ldots$ is N. Find the minimum value of $S-N$.
