FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 1: Fractions and Exponents

1-1 The product of two-sevenths and eleven-thirtieths, subtracted from the sum of one-third and three-fifths, is $\frac{a}{b}$, where a and b are positive integers with no common factors greater than 1. Find $a+b$.
[Answer: 64]

1-2 If n is a real number such $\left(\frac{3^{n}}{9}\right)^{n-3}=9$, find the sum of all possible values of 3^{n}. [Answer: 84]

1-3 If x and n are positive numbers such that $x^{n}+x^{-n}=5$, find the value of $x^{3 n}+x^{-3 n}$. [Answer: 110]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 2: Rational Expressions and Equations

2-1 If $y=\frac{3 x-7}{2 x+5}$ and $z=\frac{y+10}{4 y-1}$, then there exist integers a, b, c, and d that share no common factors greater than 1 such that $z=\frac{a x+b}{c x+d}$. Find the value of $a+b+c+d$.
[Answer: 43]

2-2 For how many positive integer values of $n, 4 \leq n \leq 60$, is the fraction $\frac{n-3}{n+3}$ in simplest form?
[Answer: 19]

2-3 Artist Lotso Monet asks his friend to watch his gallery for 8 weeks. In return, Lotso will give his friend $\$ 1200$ plus one of his paintings, which is valued at d dollars. Unfortunately, the friend has an emergency and has to leave after watching the gallery for only n weeks. Lotso compensates his friend proportionally with $\$ 200$ and the painting. If n and d are both positive integers, find the sum of the highest and lowest possible values of d.
[Answer: 7200]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 3: Circles

3-1 Points F, C, M, and L lie on the circumference of a circle, and chords $\overline{F M}$ and $\overline{C L}$ intersect at point P. If $m \overparen{F C}=60^{\circ}, m \angle M P L=40^{\circ}$, and $\overparen{C M} \cong \overparen{M L}$, find the measure of $\overparen{F L}$ in degrees.
[Answer: 260]

3-2 On a large clock on a tower, the minute hand is 12 inches long and the hour hand is 10 inches long. In a fixed interval of time (less than one hour), the tip of the minute hand traces out $\overparen{A B}$ and the tip of the hour hand traces out $\overparen{C D}$. If, at the end of this interval, $\overparen{C D}$ has a length of 5 inches, what is the length in inches of $\overparen{A B}$?
[Answer: 72]

3-3 Refer to the diagram. Line segment $\overline{P F}$ intersects the circle at points F and C, and line segment $\overline{P M}$ intersects the circle at points M and $L . M L=2 F C, P L=8$, and $P C$ and $F C$ are integers. If n is the number of possible values of $F C$ and x is the largest possible value of $F C$, find $n+x$.
[Answer: 166]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 4: Quadratic Equations \& Complex Numbers

4-1 The quadratic equation $(1+2 i) z^{2}+7 z+2-4 i=0$ has two solutions z_{1} and z_{2}, where $\left|z_{1}\right|<\left|z_{2}\right|$. For $z_{1},\left|z_{1}\right|=\frac{a \sqrt{b}}{c}$ where a, b, and c are positive integers where a and c have no common factors greater than 1 and b has no perfect square factors greater than 1. Find $a+b+c$.
[Answer: 12]

4-2 A quadratic function $f(z)=z^{2}-5 z+a+b i$, where a and b are real numbers, has zeros of
$2+p i$ and $q-6 i$ for some real numbers p and q. Find $a+b$.
[Answer: 48]

4-3 Consider the quadratic function $g(z)=a z^{2}+2 i z-5$, where a is a nonzero integer and $|a| \leq 10$. It is known that $g(z)$ has complex zeros with rational coefficients. Find the sum of all possible values of a.
[Answer: 3]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 5: Trigonometric Equations
5-1 If x is an angle in Quadrant I and $\sin ^{2}(x)+\cos ^{2}(x)+\tan ^{2}(x)=10000$, find $\sec (x)$. [Answer: 100]

5-2 If $0 \leq x \leq \frac{\pi}{4}$ and $\cos (x)+\sin (x)=1.2$, then $\cos (x)-\sin (x)=\frac{\sqrt{a}}{b}$, where a and b are positive integers and a has no perfect square factors greater than 1 . Find $a+b$.
[Answer: 19]

5-3 For $0 \leq x \leq 2 \pi$, the sum of all possible values of x that solve the equation $2 \sin (2 x)=\tan (x)$ is $k \pi$ for some integer k. Find the value of k.
[Answer: 7]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024
Match 5
Individual Section
Please write your answers on the answer sheet provided.

Round 6: Sequences \& Series

6-1 A sequence is defined recursively: $a_{1}=2, a_{2}=3$, and for all $n>2, a_{n}=2 a_{n-2}-a_{n-1}$. How many of the first 50 terms are positive?
[Answer: 27]

6-2 The third term of an arithmetic series is 9 , which is three times the sum of the first three terms. What is the $30^{\text {th }}$ term of the series?
[Answer: 225]

6-3 An infinite geometric series has a common ratio r and infinite sum $S>0$. The sum of the second term and $r^{2} S$ exceeds the value of the first term by 40%. If S is an integer and only the first two terms of the series are integers, find the least possible value of S.
[Answer: 144]

FAIRFIELD COUNTY MATH LEAGUE 2023-2024

Match 5

Team Round

Please write your answers on the answer sheet provided.

1. A proper fraction $\frac{a}{b}$ where a and b have no common factors greater than 1 has the property that multiplying the numerator by 7 and increasing the denominator by 40 will increase the value of the fraction by 40%. Find the sum of all possible values of a.
[Answer: 20]
2. Given the equation $\frac{x+k}{x-4}-\frac{3 x-5}{2 x-1}=\frac{10 x+30}{2 x^{2}-9 x+4}$, the value of k is such that $x=4$ is an extraneous solution. Given this value of k, what is the non-extraneous solution of the equation for x ? [Answer: 14]
3. A dog is on a leash tied to the corner of a shed shaped like a rectangular prism that is 20 feet long and w feet wide. The leash is 16 feet long. If the dog has as much area to roam as it would if it could roam freely in a circle at the end of a 14 -foot-long leash, what is the value of w ?
[Answer: 12]
4. A local math league is selling protractors to raise funds for busing. Students on the team produce a model that says that when protractors are priced at $\$ 2.50$ each, they expect to sell 140 of them. Additional research indicates that every price increase of $\$.50$ will result in selling 10 fewer protractors. Based on this model, find the maximum number of cents in revenue that students will be able to earn from this fundraiser.
[Answer: 45125]
5. Consider right triangle $F C L$ with right angle C. Point M lies on $\overline{C L}$ such that $\overline{F M}$ is an angle bisector. If $F L=k(F C)$ for some integer $k, C M=5$, and $F C<6$, find the least possible value of k.
[Answer: 6]
6. An infinite geometric series with the first two terms $90+78+\cdots$ has an infinite sum S. The sum of the first n terms of an arithmetic series with the first two terms $90+78+\ldots$ is N. Find the minimum value of $S-N$.
[Answer: 291]
