Please write your answers on the answer sheet provided.

Round 1: Fractions and Exponents

1-1 How many positive integers $n, 2 \le n \le 20$, have the property that there are n - 1 different simplified proper fractions with a denominator of n? [Answer: 8]

In order for there to be n - 1 different simplified fractions, no proper fractions with a denominator n must be able to be simplified, so n must be prime. There are 8 primes between 2 and 20: {2,3,5,7,11,13,17,19}, making the desired value 8.

1-2 The expression $\frac{2^{\frac{4}{3}}}{\left(16^{\frac{5}{5}}\right)\left(8^{-\frac{3}{5}}\right)}$ can be written as $\frac{a\sqrt{b}}{c}$, where *a*, *b*, and *c* are positive integers and *b* has no

factors greater than 1 that can be written as an integer to the power of *a*. Find the value of $b^{\frac{1}{c}}$. [Answer: 1024]

Writing all exponential quantities as having base 2 makes the expression $\frac{2^{\frac{4}{3}}}{\left(2^{\frac{10}{3}}\right)\left(2^{-\frac{9}{5}}\right)}$, making $2^{\frac{4}{3}-\frac{10}{3}+\frac{9}{5}}$ or $2^{-\frac{1}{5}}$ or $2^{-\frac{1}{5}}$ or $2^{-\frac{1}{5}}$ or $2^{-\frac{1}{5}}$ or $2^{-\frac{1}{5}}$, which we can change by multiplying the numerator and denominator by $2^{\frac{4}{5}}$ to get $\frac{\sqrt[5]{16}}{2}$. This makes the desired quantity $16^{\frac{5}{2}} = 2^{10} = 1024$.

1-3 If $\frac{2^{12x^2+y^2}(16^x)^{x-y}}{(8^y)^{4x-y}} = 2$ for some constants x and y, then the sum of all possible values of $\frac{81^x}{9^y}$ is $\frac{a}{b}$, where a and b are positive integers with no common factors greater than 1. Find the value of a - b. [Answer: 7]

Writing all exponential quantities on the left side as having base 2 make s the expression $\frac{(2^{12x^2+y^2})(2^{4x^2-4xy})}{2^{12xy-3y^2}}$, which simplifies to the equation $2^{16x^2-16xy+4y^2} = 2$, so $16x^2 - 16xy + 4y^2 = 1$, which also means $(2x - y)^2 = \frac{1}{4}$, so $2x - y = \pm \frac{1}{2}$. The expression $\frac{81^x}{9^y}$ can be written as 9^{2x-y} , so this quantity may equal 3 or $\frac{1}{3}$, the sum of which is $\frac{10}{3}$, making the desired quantity 10 - 3 = 7.

Please write your answers on the answer sheet provided.

Round 2: Rational Expressions and Equations

2-1 The rational equation $\frac{x}{x+1} + \frac{x}{x+4} = \frac{12}{x^2+5x+4}$ has a valid rational solution *m*, but the algebra also produces an extraneous solution *n*. Find the value of 6m - 2n. [Answer: 17]

Multiplying every term by (x + 1)(x + 4) gives x(x + 4) + x(x + 1) = 12, which in standard form makes the quadratic $2x^2 + 5x - 12 = 0$, which factors to make (2x - 3)(x + 4) = 0. This gives solutions of $x = \frac{3}{2}$ and x = -4. However, x = -4 is extraneous. Therefore the desired quantity is $6\left(\frac{3}{2}\right) - 2(-4) = 17$.

2-2 The rational expression $\frac{1}{3+\frac{1}{x+\frac{1}{2}}}$, where x is a positive integer, is equivalent to a ratio of relatively prime integers where the denominator is exactly 60 more than the numerator. What is the value of x? [Answer: 14]

Simplifying the complex fraction gives $\frac{1}{3+\frac{1}{2x+1}} = \frac{1}{3+\frac{2}{2x+1}} = \frac{1}{\frac{6x+5}{2x+1}} = \frac{2x+1}{6x+5}$. Therefore we know 6x + 5 = 2x + 1 + 60, which we can solve to get x = 14.

2-3 Shriya is mixing together a fruit juice drink. She starts with 600 milliliters of orange juice and she completely mixes in *x* milliliters of pineapple juice. She drinks 200 milliliters of the mixture but then adds 2*x* milliliters of grapefruit juice. The proportion of the drink by volume now composed of pineapple juice in terms of *x* is $\frac{x^2+Ax+B}{Cx^2+Dx+E}$. Find the value of C(D + 2A) - BE. [Answer: 9000]

After the initial mixing, the proportion by volume of pineapple juice in the mixture is $\frac{x}{x+600}$. The amount of pineapple juice she then consumes when she drinks 200 milliliters of the mixture is $\frac{200x}{x+600}$. After adding the additional grapefruit juice, the proportion by volume of pineapple juice in the mixture is $\frac{x^{-\frac{200x}{x+600}}}{x+600-200+2x}$. Multiplying the numerator and denominator by x + 600 yields $\frac{x(x+600)-200x}{(3x+400)(x+600)}$, which expands to $\frac{x^{2}+400x}{3x^{2}+2200x+240000}$. This makes the desired quantity 3(2200 + 2(400)) - (0)(240000) = 9000.

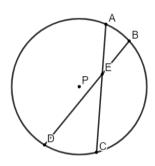
Please write your answers on the answer sheet provided.

Round 3: Circles

3-1 A circle has the property that its area in square units is exactly 8 times its circumference in units.
What is the length in units of the longest chord in the circle?
[Answer: 32]

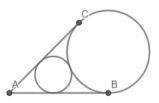
If r is the radius of the circle, then the equation described is $\pi r^2 = 8(2\pi r)$, making r = 16. Since the longest chord in the circle is the diameter, the desired quantity is 32.

3-2 See the diagram, not necessarily drawn to scale. A circle with center *P* has a radius of length 9 units and two chords \overline{AC} and \overline{BD} which meet at point *E*. If $\widehat{mCD} = 2\widehat{mAB}$ and $\underline{m}\angle AED = 140^\circ$, then the length of \widehat{CD} is $\frac{a}{b}\pi$ units where *a* and *b* are positive integers with no common factors greater than 1. Find the value of 2a + b. [Answer: 19]

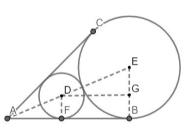


Because $m \angle AED = 140^\circ$, we have $m \angle AEB = 40^\circ$, which means $40 = \frac{m\widehat{AB} + m\widehat{CD}}{2} = \frac{3m\widehat{AB}}{2}$, so $m\widehat{AB} = \left(\frac{80}{3}\right)^\circ$ and $m\widehat{CD} = \left(\frac{160}{3}\right)^\circ$. Therefore the arclength is $\frac{160}{3} * \frac{18\pi}{360} = \frac{8}{3}\pi$, making the desired quantity 2(8) + 3 = 19.

3-3 See the diagram. Two circles are tangent to each other and are also tangent to line segments \overline{AB} and \overline{AC} . If the smaller circle has an area of 9π and the larger circle has an area of 144π , find AB. [Answer: 16]



Refer to the diagram, where centers *D* and *E* have been drawn in, as well as point of tangency *F* and point *G* such that \overline{DG} is parallel to \overline{AB} . Since DE = 3 + 12 = 15 and EG = 12 - 3 = 9, it follows that $DG^2 = 15^2 - 9^2$, so DG = 12. We can then use similar triangles knowing $\frac{AF}{3} = \frac{AF+12}{12}$ to find that AF = 4, making AB = 16.



Please write your answers on the answer sheet provided.

Round 4: Quadratic Equations & Complex Numbers

4-1 A quadratic f(x) with a leading coefficient of 1 and all rational coefficients has a zero at x = 1 - 3i. What is the value of f(10)? [Answer: 90]

Because all of the coefficients are rational, the other zero must be 1 + 3i. The sum of the zeros is 2 and the product is $1 - 9i^2 = 10$, so $f(x) = x^2 - 2x + 10$, and f(10) = 100 - 20 + 10 = 90.

4-2 Let f and g be quadratic polynomials. f(z) has all rational coefficients and a zero of z = 3 + 4i. g(z) is of the form $g(z) = z^2 - 2iz + p + qi$ where p and q are real numbers and has a zero in common with f(z) that is not 3 + 4i. |p + qi| can be written as $a\sqrt{b}$ where a and b are positive integers and b has no perfect square factors greater than 1. Find 3a - b. [Answer: 40]

With the given information, g(z) must have a zero of 3 - 4i. Since the sum of the zeros of g(z) is 2*i*, it follows that the other zero of g(z) must be -3 + 6i. The product of the zeros is $(3 - 4i)(-3 + 6i) = -9 + 18i + 12i - 24i^2 = 15 + 30i$. The magnitude of this number is $\sqrt{15^2 + 30^2} = 15\sqrt{5}$, making the desired quantity 3(15) - 5 = 40.

4-3 A quadratic function *h* has the form $h(z) = az^2 - 5iz + c$, where *a* and *c* are complex coefficients. If *a* and *c* are conjugates and $h\left(\frac{9i}{a}\right) = 0$, find the value of |a|. [Answer: 6]

Note that the zeros of *h* are $\frac{5i\pm\sqrt{-25-4ac}}{2a}$, and one of these must equal $\frac{9i}{a}$, meaning $5i + \sqrt{-25-4ac} = 18i$, and so $\sqrt{-25-4ac} = 13i$. Because *a* and *c* are conjugates, $ac = |a|^2$, so $-25 - 4|a|^2 = -169$, so $|a|^2 = 36$, and therefore |a| = 6.

Please write your answers on the answer sheet provided.

Round 5: Trigonometric Equations

5-1 If $6\cos(x) + 8 = 12$, find $36\sin^2(x) + 12$. [Answer: 32]

We have $\cos(x) = \frac{2}{3}$, and so $\sin^2(x) = 1 - \frac{4}{9} = \frac{5}{9}$, making the desired quantity $36\left(\frac{5}{9}\right) + 12 = 32$.

5-2 Consider the equation sec(x) - 2 = 2 tan(x) - csc(x) for x ∈ [0,2π). If A is the largest value of x that satisfies the equation and B is the smallest value of x that satisfies the equation, find the value of ³⁶⁰/_π (A - B).
[Answer: 570]

Multiplying the entire equation by $\sin(x)\cos(x)$ makes the equation $\sin(x) - 2\sin(x)\cos(x) = 2\sin^2(x) - \cos(x)$. Moving all terms to one side makes $2\sin^2(x) - \sin(x) + 2\sin(x)\cos(x) - \cos(x) = 0$, which factors into $(2\sin(x) - 1)(\sin(x) + \cos(x)) = 0$. Solutions come from $\sin(x) = \frac{1}{2}$ and $\sin(x) = -\cos(x)$, making a solution set of $x \in \left\{\frac{\pi}{6}, \frac{3\pi}{4}, \frac{5\pi}{6}, \frac{7\pi}{4}\right\}$. This makes the desired quantity $\frac{360}{\pi} \left(\frac{7\pi}{4} - \frac{\pi}{6}\right) = \frac{360(19\pi)}{12\pi} = 570$.

5-3 The equation $A\cos^3(x) + B\cos^2(x) + C\cos(x) + D = 0$, where A, B, C, and D are integers with no common factors greater than 1 and A > 0, has the solution set $x \in \left\{\frac{\pi}{4}, \frac{\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{5\pi}{3}, \frac{7\pi}{4}\right\}$. Find the value of A + B + C + D. [Answer: 1]

One way to approach this problem is to construct linear equations in cosine that will produce the desired solution set. The equation $\cos(x) = \frac{1}{2}$ has solutions $x \in \left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$. The equation $\cos(x) = \frac{1}{\sqrt{2}}$ has solutions $x \in \left\{\frac{\pi}{4}, \frac{7\pi}{4}\right\}$. The equation $\cos(x) = -\frac{1}{\sqrt{2}}$ has solutions $x \in \left\{\frac{3\pi}{4}, \frac{5\pi}{4}\right\}$. This makes an equation with three linear factors in cosine: $(2\cos(x) - 1)(\sqrt{2}\cos(x) - 1)(\sqrt{2}\cos(x) + 1) = 0$, when the factors are multiplied together, the equation becomes $4\cos^3(x) - 2\cos^2(x) - 2\cos(x) + 1 = 0$, making the desired quantity 4 - 2 - 2 + 1 = 1.

Please write your answers on the answer sheet provided.

Round 6: Sequences & Series

6-1 An arithmetic sequence has the first three terms 3, 7, 11, What is the average (arithmetic mean) of the first 100 terms? [Answer: 201]

Because the series is arithmetic, the average of the first 100 terms is also the average of the first and last term. The last term is 3 + 99(4) = 399, so the desired quantity is $\frac{3+399}{2} = 201$.

6-2 There are two infinite geometric series with the same first term $a_1 = 48$ and common ratios r_1 and r_2 . For each series, the infinite sum is 12 more than five times the second term. Find the value of $\frac{1}{1-r_1-r_2}$.

[Answer: 20]

If *r* is an known ratio, then we can construct the eqaution $\frac{48}{1-r} = 12 + 5(48r)$, which simplifies to $240r^2 - 228r + 36 = 0$. Note that this means the sum of the two solutions is $\frac{228}{240} = \frac{19}{20}$, which makes the desired value $\frac{1}{1-\frac{19}{20}} = 20$.

6-3 There is an arithmetic series with the first term k such that the sum of the first N terms for all $N \ge 1$ is kN^2 . Find the value of the 100th term of the series if k = 10. [Answer: 1990]

Note that the first term must be equal to $10(1)^2 = 10$. The sum of the first two terms must be $10(2)^2 = 40$, which means the second term must be 30. Therefore the series has a common difference of 20, and the desired value is 10 + 99(20) = 1990.

FAIRFIELD COUNTY MATH LEAGUE 2022–2023 Match 5 Team Round

Please write your answers on the answer sheet provided.

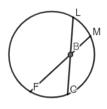
1. Let *n*, *a*, and *b* be positive integers such that $\frac{n}{2023} = \frac{1}{a + \frac{1}{b}}$. If $n \le 10$ and b > 1, find the smallest possible value of *a*. [Answer: 337]

Noting that abn + n = 2023b and therefore $b = \frac{n}{2023-an}$, we then notice that smaller values of a will correspond with larger values of n and that 2023 - an must be less than n if b > 1. For n = 10, 2023 - 10a must equal 1, 2, or 5, which means 10a must equal 2022, 2021, or 2018, none of which are possible if a is an integer. We continue decreasing values of n until we notice for n = 6, it is possible that 2023 - 6a = 1, because then 6a = 2022 and therefore a = 337.

2. There are two values of the constant *a* such that the equation $\frac{5}{ax-4} = \frac{2}{x+3}$ would have no solutions for *x*. The quadratic equation $Ma^2 + Na + P = 0$, for relatively prime integers *M*, *N*, and *P*, has solutions equal to these two values of *a*. Find the value of |M| + |N| + |P|. [Answer: 33]

First note that $x \neq -3$. Cross-multiplication produces 5x + 15 = 2ax - 8. This will have no solutions for x if 5 = 2a, so $a \neq \frac{5}{2}$. Additionally, since $x \neq -3$, it follows that $-15 + 15 \neq -6a - 8$, so $a \neq -\frac{4}{3}$. This leads to the quadratic equation (2a - 5)(3a + 4) = 0, which expands to make $6a^2 - 7a - 20 = 0$, making the desired quantity 6 + 7 + 20 = 33.

3. See the diagram (not drawn to scale), which shows a circle with two chords *FM* and *LC* that intersect at point *B*. *FL* is a diameter of the circle, *FB* = 5, *MB* = 2, and *mCM* = 60°. The area of the circle is ^c/_d π where *c* and *d* are positive integers with no common factors greater than 1. Find the value of 10*c* + *d*. [Answer: 614]



Because $\widehat{mCM} = 60^{\circ}$ and \widehat{FL} is a semicircle, it follows that $\widehat{mFC} + \widehat{mML} = 120^{\circ}$ and therefore $m \angle FBC = 60^{\circ}$. Also, because \widehat{FL} is a semicircle, $\angle FCL$ is a right angle and therefore $m \angle FBC = 30^{\circ}$. This means $BC = \frac{5}{2}$ and $FC = \frac{5\sqrt{3}}{2}$. We can find BL since $\frac{5}{2}BL = (5)(2)$, and so BL = 4 and $CL = \frac{13}{2}$. We can find the diameter FL using $(FL)^2 = \left(\frac{13}{2}\right)^2 + \left(\frac{5\sqrt{3}}{2}\right)^2$, yielding $(FL)^2 = 61$, so $FL = \sqrt{61}$. The area of the circle is therefore $\left(\frac{\sqrt{61}}{2}\right)^2 \pi = \frac{61}{4}\pi$, making the desired quantity 10(61) + 4 = 614.

4. Consider the polynomial f(z) = z² + (2 - 4i)z - 3 - 10i. If z₀ = a + bi, where a and b are integers, has the property that f(z₀) lies on the real axis, what is the value of |f(z₀)|? [Answer: 8]

One way to solve this is to put f(z) into vertex form, making $f(z) = (z + 1 - 2i))^2 - 3 - 10i - (1 - 2i)^2 = (z + 1 - 2i)^2 - 6i$. Letting $z_0 = a + bi$ gives $f(z_0) = (a + 1 + (b - 2)i)^2 - 6i$. This quantity will have a real component of $(a + 1)^2 - (b - 2)^2$ and an imaginary component of (2(a + 1)(b - 2) - 6)i, which must equal zero. Therefore (a + 1)(b - 2) = 3. Since *a* and *b* are integers, then a = 0 and b = 5 or a = 2 and b = 3. In either case, $|(a + 1)^2 - (b - 2)^2| = |1 - 9| = 8$.

5. There are three angles θ, 0 ≤ θ < π/2, such that sin(5θ) = cos(θ). The sum of these angle measures in radians is a/b π where a and b are positive integers with no common factors greater than 1. Find 2b - a. [Answer: 11]

Note that $\cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right)$. The value of $\frac{\pi}{2} - \theta$ will always be in quadrant I, but there are three cases we must consider for 5θ : 1) it is less than $\frac{\pi}{2}$, 2) it lies between $\frac{\pi}{2}$ and π , and 3) it lies between 2π and $\frac{5}{2}\pi$. For case 1 we have $5\theta = \frac{\pi}{2} - \theta$, so $\theta = \frac{\pi}{12}$. For case 2 we have $\pi - 5\theta = \frac{\pi}{2} - \theta$, so $\theta = \frac{\pi}{8}$. Finally for case 3 we have $5\theta - 2\pi = \frac{\pi}{2} - \theta$, so $\theta = \frac{5\pi}{12}$. The sum of these values is $\frac{5\pi}{8}$, making the desired quantity 2(8) - 5 = 11.

6. Consider a sequence where a₀ = 5, a₁ = 6, a₂ = 7, and for n > 2, a_n = 2a_{n-1} - a_{n-3}. Find the smallest value n such that a_n - a_{n-1} > 1000. [Answer: 17]

If we construct the first few terms of the sequence, we get 5, 6, 7, 9, 12, 17, 25... Notice that the value of $a_n - a_{n-1}$ is the n^{th} Fibonacci number, where $F_1 = F_2 = 1$. Constructing the Fibonacci sequence until we arrive at a term greater than 1000 yields 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597..., and the last term is the 17th term of the sequence, making the desired value 17.