Match 2 Round 1
Arithmetic: Factors &
Multiples

1.) {72,60,48}

2.) {15360,3600,6480}

3.) {360,264,756}

- 1.) The least common multiple of a and b is $\{6,5,4\}$ times the greatest common factor of a and b. If $ab = \{864,720,576\}$, find the least common multiple of a and b.
- 2.) What is the smallest whole number to have exactly {44,45,50} factors, including 1 and itself?
- 3.) The greatest common factor of N and $\{54,24,54\}$ is $\{9,4,9\}$. The least common multiple of N and $\{378,120,594\}$ is $\{1890,1320,4158\}$. Find the sum of all possible values of N.

Match 2 Round 2

Algebra 1: Polynomials

and Factoring

1.) {29,20,53}

2.) {96,160,72}

3.) {38,26,30}

1.) If $(2x + 3)(ax + b) = \{8,6,4\}x^2 + cx - \{21,15,27\}$ for all values of x, find the value of a - 3b - 2c.

2.) If the polynomial $2x^3 - \{22,26,20\}x^2 + mx - n$ with constant coefficients m and n has three not-necessarily distinct positive integer zeros, what is the largest possible value of n?

3.) A particular quartic polynomial with integer coefficients has a leading coefficient of 1, a cubic coefficient of $\{-12, -16, -14\}$, one zero of $\{2+i, 3+i, 2+2i\}$, and another zero of a+bi where a and b are nonzero integers and $a \neq \{2,3,2\}$. If the constant term of the quartic is less than 2021, find the number of possible values of b.

Match 2 Round 3

1.) {36,64,100}

Geometry: Area & Perimeter

2.) {177,153,129}

3.) {112,180,192}

- 1.) A square with area N has a perimeter equal to the circumference of a circle with diameter $\{6,8,10\}$ and area M. Find the value of $\frac{M^2}{N}$.
- 2.) A regular hexagon has the property that the difference between the longest diagonal length and the perpendicular distance between any two opposite sides is exactly $\{7,6,5\}$ units. The perimeter of the hexagon can be written as $a + b\sqrt{c}$ where a, b, and c are positive integers and c has no perfect square factors greater than 1. Find a + 2b + 3c.
- 3.) Consider trapezoid MATH with $\overline{MA}||\overline{HT}$, right angle H, MA < TH, $MA = \{16,18,16\}$, $MH = \{7\sqrt{7}, 12\sqrt{5}, 24\sqrt{3}\}$ and $AT = \{4\sqrt{23}, 6\sqrt{21}, 16\sqrt{7}\}$. Point Y lies on diagonal \overline{MT} such that $\overline{AY} \perp \overline{MT}$. Find $(AY)^2$.

Match 2 Round 4 Algebra 2: Absolute

Value & Inequalities

1.) {91,89,87}

2.) {7,5,9}

3.) {9,6,5}

1.) How many integers satisfy the inequality $3|x - 11| < \{136,133,130\}$?

2.) The inequality |x + a| < b has a solution set for x of $(a - 2, -5a - \{3,1,5\})$. Find the value of b.

3.) Consider three positive numbers a, b, and c such that a < b < c. The minimum value for $x \in [a, c]$ of f(x) = |x - a| + |x - b| + |x - c| is {17,20,25}. The maximum value of f(x) for $x \in [a, c]$ is {30,33,40}. Find the value of |a + c - 2b|.

Match 2 Round 5

Precalculus: Law of Sines

& Cosines

1.) {49,121,1}

2.) {38249,9961,1321}

3.) {630, 96, 278}

- 1.) Given triangle MRH with m=2, r=3, and h=4, $\sin^2(\{M,R,H\})=\frac{a}{b}$ where a and b are integers with no common factors greater than 1. Find b-a.
- 2.) Consider triangle *ABC* with area $\{42\sqrt{5}, 10\sqrt{21}, 6\sqrt{5}\}$. If $\sin(C) = \left\{\frac{3\sqrt{5}}{7}, \frac{\sqrt{21}}{5}, \frac{\sqrt{5}}{3}\right\}$ and both a and b are integers, find the positive difference between the maximum possible value of c^2 and the minimum possible value of c^2 .
- 3.) Consider triangle ABC with acute angle B and distinct points D and E on \overline{BC} such that BD = DE = EC. If $AB = \{10,15,20\}$, the area of triangle ABC is $\{36,54,72\}$, and $\sin(B) = \frac{24}{25}$, then $\sin(\angle AEB) = \frac{a\sqrt{b}}{c}$ where a, b, and c are integers with a and b having no common factors

greater than 1 and b having no perfect square factors other than 1. Find a + b + c.

Match 2 Round 6

Miscellaneous: Equations of

Lines

1.) {15,12,21}

2.) {56,46,54}

3.) {12,11,7}

- 1.) A line perpendicular to 3x Ay = 24 but with the same x-intercept has equation $Bx + Cy = \{40,32,56\}$, where A, B, and C are positive numbers. Find the value of AC.
- 2.) A line with a positive slope can be written parametrically as x = at + 1 and y = 6t + b. If a and b are integers and the line contains the point $\{(10,3), (8,5), (9,7)\}$, find the sum of the greatest possible values of a and b.
- 3.) A nonzero number m has the property that if a line has a slope of m, any line perpendicular to it will have a slope exactly $\{3,4,5\}$ less than m. Line a has slope m^2 and y-intercept (0,-34). Line b is perpendicular to a and has y-intercept $(0,\{50,120,127\})$. Find the x-coordinate where lines a and b intersect.

Team Round

FAIRFIELD COUNTY MATH LEAGUE 2021-2022 Match 2 Team Round

1.) 200 4.) 15

2.) 400 5.) 169

3.) 80 6.) 39

- 1.) The greatest common factor of 12 and *N* is 4. If there are at least 175 positive integers less than or equal to 2021 that are divisible by 12 or *N* find the largest possible value of *N*.
- 2.) Consider $f(x) = x^4 5x^2 + 4$. For how many positive integer values of $n \le 1000$ is f(n) divisible by 360?
- 3.) Quadrilateral FCML is inscribed in a circle with an area of 50π , and \overline{FM} is a diameter of the circle. The altitude of triangle FCM from C intersects \overline{FM} at D, and the altitude of triangle FLM from point L intersects \overline{FM} at E. If ED = 4DM and FE = 5DM, find the area of FCML.
- 4.) If, for constants a and b, the solution set for |x ab| > b is $\left(-\infty, -\frac{2}{3}a\right) \cup \left(\frac{3}{2}b, \infty\right)$, find the value of 10a + 15b.
- 5.) On a particular day, an 8 foot pole casts a 6 foot shadow on level ground when the pole is inserted perpendicular to the ground. At the same time, an identical 8-foot pole also standing perpendicular to level ground casts a five foot shadow on a hill with an angle of elevation $\theta < 45^{\circ}$ to level ground. If $\sin(\theta) = \frac{a}{b}$ where a and b are integers with no common factors greater than 1, find a + b.
- 6.) The line x + 3y = 9 intersects a circle centered at the origin with radius 5 at two points, creating a chord with endpoints D in quadrant I and E in quadrant II. If point F is placed on the circle such that DE = EF, then the line containing the points D and F has equation Ax + By = C, where A > 0 and A, B, and C are integers that share no common factors greater than 1. Find A + B + C.