Match 2 Round 1 Arithmetic: Factors &	1.)
Multiples	2.)
	3.)

- 1.) The least common multiple of *a* and *b* is $\{6,5,4\}$ times the greatest common factor of *a* and *b*. If $ab = \{864,720,576\}$, find the least common multiple of *a* and *b*.
- 2.) What is the smallest whole number to have exactly {44,45,50} factors, including 1 and itself?
- 3.) The greatest common factor of *N* and {54,24,54} is {9,4,9}. The least common multiple of *N* and {378,120,594} is {1890,1320,4158}. Find the sum of all possible values of *N*.

Match 2 Round 2		1.)
Algebra 1: Polynomials		
and Factoring		
	I	2.)
		3.)

- 1.) If $(2x + 3)(ax + b) = \{8,6,4\}x^2 + cx \{21,15,27\}$ for all values of *x*, find the value of a 3b 2c.
- 2.) If the polynomial $2x^3 \{22,26,20\}x^2 + mx n$ with constant coefficients *m* and *n* has three not-necessarily distinct positive integer zeros, what is the largest possible value of *n*?
- 3.) A particular quartic polynomial with integer coefficients has a leading coefficient of 1, a cubic coefficient of {-12, -16, -14}, one zero of {2 + i, 3 + i, 2 + 2i}, and another zero of a + bi where a and b are nonzero integers and a ≠ {2,3,2}. If the constant term of the quartic is less than 2021, find the number of possible values of b.

Match 2 Round 3 Geometry: Area & Perimeter	1.)
	2.)
	3.)

- 1.) A square with area *N* has a perimeter equal to the circumference of a circle with diameter {6,8,10} and area *M*. Find the value of $\frac{M^2}{N}$.
- 2.) A regular hexagon has the property that the difference between the longest diagonal length and the perpendicular distance between any two opposite sides is exactly {7,6,5} units. The perimeter of the hexagon can be written as $a + b\sqrt{c}$ where *a*, *b*, and *c* are positive integers and *c* has no perfect square factors greater than 1. Find a + 2b + 3c.
- 3.) Consider trapezoid *MATH* with $\overline{MA} || \overline{HT}$, right angle *H*, MA < TH, $MA = \{16,18,16\}, MH = \{7\sqrt{7}, 12\sqrt{5}, 24\sqrt{3}\} \text{ and } AT = \{4\sqrt{23}, 6\sqrt{21}, 16\sqrt{7}\}.$ Point *Y* lies on diagonal \overline{MT} such that $\overline{AY} \perp \overline{MT}$. Find $(AY)^2$.

Match 2 Round 4 Algebra 2: Absolute Value & Inequalities	1.)
	2.)
	3.)

- 1.) How many integers satisfy the inequality $3|x 11| < \{136, 133, 130\}$?
- 2.) The inequality |x + a| < b has a solution set for x of $(a 2, -5a \{3, 1, 5\})$. Find the value of b.
- 3.) Consider three positive numbers a, b, and c such that a < b < c. The minimum value for $x \in [a, c]$ of f(x) = |x a| + |x b| + |x c| is {17,20,25}. The maximum value of f(x) for $x \in [a, c]$ is {30,33,40}. Find the value of |a + c 2b|.

Match 2 Round 5		1.)
Precalculus: Law of Sines		
& Cosines		
	I	2.)
		3)

- 1.) Given triangle *MRH* with m = 2, r = 3, and h = 4, $\sin^2(\{M, R, H\}) = \frac{a}{b}$ where *a* and *b* are integers with no common factors greater than 1. Find b a.
- 2.) Consider triangle *ABC* with area $\{42\sqrt{5}, 10\sqrt{21}, 6\sqrt{5}\}$. If $\sin(C) = \{\frac{3\sqrt{5}}{7}, \frac{\sqrt{21}}{5}, \frac{\sqrt{5}}{3}\}$ and both *a* and *b* are integers, find the positive difference between the maximum possible value of c^2 and the minimum possible value of c^2 .
- 3.) Consider triangle *ABC* with acute angle *B* and distinct points *D* and *E* on \overline{BC} such that BD = DE = EC. If $AB = \{10,15,20\}$, the area of triangle *ABC* is $\{36,54,72\}$, and $\sin(B) = \frac{24}{25}$, then $\sin(\angle AEB) = \frac{a\sqrt{b}}{c}$ where *a*, *b*, and *c* are integers with *a* and *b* having no common factors greater than 1 and *b* having no perfect square factors other than 1. Find a + b + c.

Match 2 Round 6	1.)
Miscellaneous: Equations of Lines	2.)
	3.)

- 1.) A line perpendicular to 3x Ay = 24 but with the same *x*-intercept has equation $Bx + Cy = \{40, 32, 56\}$, where *A*, *B*, and *C* are positive numbers. Find the value of *AC*.
- 2.) A line with a positive slope can be written parametrically as x = at + 1 and y = 6t + b. If *a* and *b* are integers and the line contains the point {(10,3), (8,5), (9,7)}, find the sum of the greatest possible values of *a* and *b*.
- 3.) A nonzero number *m* has the property that if a line has a slope of *m*, any line perpendicular to it will have a slope exactly $\{3,4,5\}$ less than *m*. Line *a* has slope m^2 and *y*-intercept (0, -34). Line *b* is perpendicular to *a* and has *y*-intercept $(0, \{50,120,127\})$. Find the *x*-coordinate where lines *a* and *b* intersect.

Team Round FAIRFIELD COUNTY MATH LEAGUE 2021-2022 Match 2 Team Round

1.)	4.)
2.)	5.)
3)	6.)

- 1.) The greatest common factor of 12 and N is 4. If there are at least 175 positive integers less than or equal to 2021 that are divisible by 12 or N find the largest possible value of N.
- 2.) Consider $f(x) = x^4 5x^2 + 4$. For how many positive integer values of $n \le 1000$ is f(n) divisible by 360?
- 3.) Quadrilateral *FCML* is inscribed in a circle with an area of 50π , and \overline{FM} is a diameter of the circle. The altitude of triangle *FCM* from *C* intersects \overline{FM} at *D*, and the altitude of triangle *FLM* from point *L* intersects \overline{FM} at *E*. If ED = 4DM and FE = 5DM, find the area of *FCML*.

4.) If, for constants *a* and *b*, the solution set for |x - ab| > b is $\left(-\infty, -\frac{2}{3}a\right) \cup \left(\frac{3}{2}b, \infty\right)$, find the value of 10a + 15b.

- 5.) On a particular day, an 8 foot pole casts a 6 foot shadow on level ground when the pole is inserted perpendicular to the ground. At the same time, an identical 8-foot pole also standing perpendicular to level ground casts a five foot shadow on a hill with an angle of elevation $\theta < 45^{\circ}$ to level ground. If $\sin(\theta) = \frac{a}{b}$ where *a* and *b* are integers with no common factors greater than 1, find a + b.
- 6.) The line x + 3y = 9 intersects a circle centered at the origin with radius 5 at two points, creating a chord with endpoints *D* in quadrant I and *E* in quadrant II. If point *F* is placed on the circle such that DE = EF, then the line containing the points *D* and *F* has equation Ax + By = C, where A > 0 and *A*, *B*, and *C* are integers that share no common factors greater than 1. Find A + B + C.